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Abstract. A random walk computer model of river network is proposed. It is shown that 
the length and the width o’fbath network and of individual streams that constitute it exhibit 
Scaling ell-.Z”l and @l-Y~ (eu and eL are the longitudinal and lateral sizes of the 
object. *is the overall length of the abject). The simulated individual streams display 
self-similar behaviour at small 2 (vll = u,=0.80*0.03) adself-affine behaviour at large 
3 (vll=0.99+0.03, vL=0.SO*0.03). Similar behaviour is observed for simulated river 
networks too: vII = vi= 0.66+0.03 correspond to these in the self-similarity region, while 
in the self-affinity region vu=0.74*0.03 and u,=0.43*0.03. Proceeding from the self- 
affinity of individual riven and river networks Hack‘s empirical  law^ L - F B  has been 
substantiated(Listhhelengthafthemainriver,Fthecatchmentarea),whereP= l /( l+H), 
H = vL/vII, Hursl’s exponent for river networks. The scaling for the water mars distribution 
over the river network in the self-affine region is also revealed: Cm,u-.Y”q @m,L-.Z”-, 
~,,,,~=0.72r0.03, v,,,,=0.38+0.03. Itisahownthatinthisregionthewatermasr M depends 
upon the network total length and upon the catchment area as a power law: M-.Z1.67- 
F‘.”. 

Computer models of fractal river networks have been previously studied in [l-41. The 
simulated river networks obtained by the authors of these works were, in the majority 
of cases, both separately and in their aggregate, compact sets (they covered the area 
densely). Moreover, the individual river networks for several models proved to be 
self-affine fracial objects, the geometry of which was described by the relationships 

i-y11 (1) 

where I and b are the characteristic longitueinal and lateral sizes of the network, and 
3 the overall length of the river network. In all cases the scaling indices vII and vl 
proved to be equal to 3 and f ,  respectively, which provided grounds for the authors 
of [3] to indicate the discovery of some universality class-‘Scheidegger’s river 
networks’. Besides this, the model of self-similar DLA with fractal dimension less than 
2.0 was used as a river network model in [l]. In~the present article we have considered 
the case of simulated river networks with fractal individual streams which do not fall 
under the described universality class. 

The process of natural river network formation is very complicated and at present 
is not studied completely. It seems to us that its adequate simulation based on the 
fundamental laws of physics is hardly possible at this time. Therefore we tried to build 
the simplest model, which would, nevertheless, reproduce the main geometrical features 
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of natural rivers. We proceeded from the fact that the stochastic character of the natural 
river is caused not only by irregularities of the land but also by the stochastic nature 
of.the process of the river network formation itself. The river not only follows the 
land, butalso forms it. Therefore in our model we did not consider the land irregularities 
as quenched. We tried to take into account two factors governing the river network 
formation: land irregularities and inertia of the flow. 

When simulating the river network we used the random walk method. First, a 
certain number of particles (river sources) was randomly placed on a 300 x 300 square 
lattice. Then the simultaneous wandering of particles over the lattice was started, the 
trajectories of which were regarded as rivers. Each move, the particle jumped to the 
place of one of the neighbouring sites located on the sides and diagonals of the square 
cell. The relative probabilities of such jumps were determined as the product of two 
probabilities. The first simulated the relief of the slope on which the ‘rivers’ flowed. 
In the direction of the general land slope this probability was maximal. The second 
probability determined the tuming of the trajectory with respect to the direction of 
the previous jump. It was maximal in this direction. The turning of the trajectory at 
each step by more than 90” was forbidden (since ‘instantaneous’ turning of a natural 
river through a large angle is unlikely). Nevertheless, turn of the simulated river through 
any angle may occur after several steps. The direction of each next jump was chosen 
randomly using &e product of the above described probabilities. The first one character- 
izes, to some extent, the,role of gravity, and the second one the role of inertial force. 

When the walking particle crossed its own trajectory the formed loop was erased 
(to some extent this corresponds to the disappearance of river meanders after channel 
autopiracy). Unlike the models of other authors, in our model the particle was allowed 
to walk (following the local slope) in all directions. In the case of two-trajectory- 
confluence only one particle continued walking. The simulation process ended when 
all particles reached the lower edge of the lattice (ocean shore). 

As a result, an aggregate of river networks of various sizes was formed within the 
simulated slope, which also included non-ramified rivers. One realization is given as 
an example in figure 1. We have investigated the river networks at various source 

Figure 1. Example of simulated river netowrks. One of the individual river networks is 
highlighted. 
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densities and at various gradients of the simulated slope. The identification and analysis 
of both individual streams and individual river network fractal properties have been 
camed out according to one and the same technique.using relationships 

( 3 )  Ell - 2"ll . ,  . 

where 511 and EL .are mean-square deviations of points belonging to an individual 
stream (or to an individual river .network) with overall length 2 averaged over the 
streams' or over the networks, respectively. 

Analysis of graphs i+Z') and E L ( 2 )  shows that at small 2 the simulated individual 
streams are characterized by self-similarity, and at large 2, by self-affinity. The scale 
of 2,, which divides these two regions, decreases with increase of the overall slope. 
The characteristic graphs of functions 0,1(2) and E L ( 2 )  for simulated individual 
streams are shown in figure 2(u). It has been established that  in^ the iegion of self- 
similarity YI I  = vL = 1/D = 0.8Oi 0.03, i.e. the fractal dimension D is close to 1.25. 
For the self-affinity region the scaling exponents vll and vL are equal to 0.99 r0.03 and 
0.50*0.03, respectively. The estimations obtained may be interpreted as follows. The 
excess of values vII and vL in the self-similarity region (~0.8) over the corresponding 

1 I O  i o 2  i o 3  
river total length 

c\ 

I O  i o 2  i o 3  1 0 '  
network total length 

Figure 2. Characteristic graphs of functions r,,(2), ~ ~ ( 2 )  and M ( 2 )  far individual rivers 
( a )  and individual river networks (b) .  I is the self-similarity region, I1 the self-affinity 
region, I l l  the edge effect region (the graphs show the points from to 10 simulations). 
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values for the Brownian motion (0.5) indicates that repulsion of the particle from its 
own trajectory takes place (this occurring by way of loop erasing). 

The existence of a self-affinity region is explained by the following reasoning. The 
walking of the simulated stream trajectory is conditioned by two components-deter- 
ministic (overall gradient of the simulated slope) and random (local gradient connected 
with local roughness of the relief). On larger scales the influence of the deterministic 
component predominates, therefore, and ull tends to 1.0. Meanwhile, the trajectory of 
the simulated stream on these scales ceases to,experience repulsion from its distant 
parts and the U, exponent approaches 0.5 as in the ?se of Brownian motion. The 
values vII and U, obtained for simulated individual streams for both the self-similarity 
and self-affinity regions are in good agreement with our data conceming the Dniester 
and Pruth rivers (self-similarity region: ull = v, = 1/ D = 0.85 * 0.04; self-affinity region: 

The analysis ofgraphs Fll(9) and CL(9)  for simulated river networks also permitted 
the identification oftwo scaling regions-the self-similarity region at small 3' and the 
self-affinity region at large 2'. The scale Z2, whkh divides these regions,, decreases 
with increase of the general gradient of the simulated slope. The characteristic graphs 
of functions Fli(3') and FA(&) for individual simulated river networks are shown in 
figure 2(b). For the self-similarity region vII = vL = 0.66~t0.03. The uII and uL exponents 
for the self-affinity region are equal to 0.7410.03 and 0.43*0.03, respectively. 

On a qualitative level the above-given estimations can be explained as was done 
when dealing with individual streams. For comparison with natural data we give values 
u,l= 0.61 and ul. = 0.44 obtained for the Alto Liri basin (the data for calculating U I I  and 
U, were taken from 151). Thus, self-affinityis characteristic for both the simulated and 
natural river networks. In both cases the Hurst's exponent values [6]  H = uL/vll 
appeared to be significantly less then 1.0 (0.58 and 0.72), while the lacunary dimension 
[7] Do=2/(ull+ui) was less than 2.0 (1.71 and 1.90). 

The self-affinity of individual streams and river networks allows provision of the 
following substantiation to Hack's empirical law [SI L- Fp, where L is the length of 
the main river, F the catchment area, and Ps0.6 .  Using the above-established 
relationships we can write 

L -  li!",!i- F"mdusu("mii+"d ( 5 )  
so that 

P = ~ ~ I I / U ~ I I ( U ~ I I +  v n J  = l/usIl(l+Hn). (6) 
In the given relationship the 's' and 'n' indices indicate that the corresponding 
exponents belong to individual streams (is') or to river networks ('n'), F-Fnl~@.I ,  
l-Fn!l. As has been shown above, U , ~ ~ - ~ . O  so we may write P=l / ( l+Hn) .  For the 
investigated simulated river networks we have H, = 0.58, from which p = 0.63, in good 
agreement with the well known empirical estimations [SI. 

The fractal structure of the river network must also condition the scaling properties 
of hydrological characteristics, the geometrical carrier of which is the river network. 
Here we shall consider the scaling properties of mass M determined as the overall 
quantity of water in the river network 

Y I I  =0.97*0.04, vL=0.53iO.12). 

The linear density of mass p was taken as follows. For each point of tributaryless 
rivers (from source to the first influx of the tributary) p =  1. With the inflow of each 
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tributary the p value on the lower section of the river increased by the p value of the 
trjbutary. Within the tributaryless sections of the river the density was taken as constant. 
From the hydrological point of view such a scheme of p distribution within the river 
network is reasonably well substantiated [9 ]  and thus it can be used to calculate M. 

As a result of proper treatment of data in res ect of simulated river networks for 

are the mean-square deviations of points 
belonging to the river network taken with weight p. The overscribed bar indicates 
averaging over the networks hiving overall length 3. In the self-similarity region we 
were unable to obtain similar relationships because of the small sizes of river networks. 

These results allow overall water mass in the river network M and its catchment 
area F for the self-affinity region: M - The results shown here serve as vivid 
evidence that the fractal properties of the river network also generate the scaling 
properties of processes occurring in it (in this case the process of forming the water 
mass in the river network). 

The results presented in this article indicate the proposed computer model of a 
fractal river network with fractal individual streams, is qualitatively adequate to describe 
natural river networks. We also believe that our interpretation of Hack's empirical law 
181 is better substantiated than r1-31 since it takes into account the fractal properties 
of both the individual streams and river networks. An important result is also the 
identification of scaling properties of the processes whose geometrical carrier is the 
river network. In their aggregate the obtained results distinguish the proposed model 
( vll = 0.74, v, = 0.43) from two classes of ramified fractal objects described by Meakin 
[ 101 which include (i) the off-lattice ballistic, ballistic lattice and Eden models ( vll = 0.60, 
vL = 0.40) and (ii) Scheidegger's river patterns (vli =$, vl =f).  One more distinction 
of our model is the existence of both self-similarity and self-affinity regions. 

It should be mentioned that the scaling exponents for natural river networks 
(vi1 =0.61, vL =0.44 for the Alto Liri basin) are rather close to those of the class (i) 
above, despite there being no direct analogy between river network formation and 
ballistic deposition. To find out if natural river networks fall into the class of universality 
(i) or into the new class found by us, additional data on natural river networks are 
necessary because data on one basin may be unrepresentative. 

The authors are grateful to P G Gania and J A Antonova for their assistance in selecting 
and preparing the manuscript of the article. 

the self-affinity region relationships M -  3 1.67LO.02 (figure~(b)), @,,II-.Y'707u0.03, emL- 
~0.3S+0.03 were established. Here O,,,,l and 
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